Practice abstract of precision agricultures as a competitive advantage of the Andalusian horticultural sector

Providing the horticultural sector with tools and usable, efficient, simple and economical means, designed directly for the first agent of the value chain, with which it can autonomously acquire immediate information of the crop and thus be able to influence decision-making related to irrigation, preventing an arbitrary management of it, resulting in a water saving of at least 25%. Likewise, these technological means are able to record the hydraulic impact of a crop and therefore allow the calculation of the Water Footprint, thus being able to develop a protocol of "calculation methodology" with the future purpose of incorporation as Ad-On a GlobalGAP.

lub

Szczegółowy opis

1/1

lub

Szczegółowe informacje o wkładzie

Lokalizacja
  • Spain
Autorzy
  • Victoria Cruz Sánchez
Cel
  • Communication
  • Dissemination
Typ pliku
Document
Rozmiar pliku
290 kB
Utworzono dnia
05-06-2020
Język pochodzenia
Spanish
Licencja
CC BY

Powiązane treści

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.