Scenarios maps: visualising optimised scenarios where supply of soil functions matches demands
LANDMARK is a pan-European multi-actor consortium of leading academic and applied research institutes, chambers of agriculture and policy makers that will develop a coherent framework for soil management aimed at sustainable food production across Europe. The LANDMARK proposal builds on the concept that soils are a finite resource that provide a range of ecosystem services known as “soil functions”. Functions relating to agriculture include: primary productivity, water regulation & purification, carbon-sequestration & regulation, habitat for biodiversity and nutrient provision & cycling. Tradeoffs between these functions may occur: for example, management aimed at maximizing primary production may inadvertently affect the ‘water purification’ or ‘habitat’ functions. This has led to conflicting management recommendations and policy initiatives. There is now an urgent need to develop a coherent scientific and practical framework for the sustainable management of soils.
Szczegółowy opis
1/1
Szczegółowe informacje o wkładzie
- Lokalizacja
- Europe
- Autorzy
- Rachel Creamer
- Cel
- Dissemination
- Education/Training
- Typ pliku
- Document
- Rozmiar pliku
- 13.40 MB
- Utworzono dnia
- 19-11-2019
- Język pochodzenia
- English
- Oficjalna strona projektu
- LANDMARK: Land Management Assessment Research Knowledge base ( EU H2020 project)
- Licencja
- CC BY
Powiązane treści
A Bio-inspired Multilayer Drainage System
Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/
NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY
This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).
Environmental monitoring within greenhouse crops using wireless sensors
Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.