HTC of biomass

BRANCHES was a H2020 “Coordination Support Action” project, that brought together 12 partners from 5 different countries. The overall objective of BRANCHES was to foster knowledge transfer and innovation in rural areas (agriculture and forestry), enhancing the viability and competitiveness of biomass, and supply chains and promoting innovative technologies, rural bioeconomy solutions and sustainable agricultural and forest management

lub

Szczegółowy opis

1/1

lub

Szczegółowe informacje o wkładzie

Lokalizacja
  • Spain
Autorzy
  • Maider Gomez
  • Daniel García
  • Pablo Rodero
  • Alicia Mira
Cel
  • Communication
  • Dissemination
Typ pliku
Document
Rozmiar pliku
725 kB
Utworzono dnia
31-12-2023
Język pochodzenia
English
Oficjalna strona projektu
Licencja
CC BY

Powiązane treści

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.