Use of biomass in farming for heating poultry houses

The BroilerNet project involves a bottom-up approach to identify challenges and innovation needs for broiler farmers in Europe, and to collect promising and already successfully implemented Good Practices to meet the challenges in questions. The top Good Practices selected by experts within the three thematic areas (animal health management, animal welfare and sustainability) have been summarized in factsheets. Heating plays a crucial role in poultry farming, as it is essential to maintain high heating temperatures in the poultry houses to ensure the thermal comfort of the birds, especially during the start of the batch (32-34 degrees C) until they are fully feathered. Propane gas heating has been widely developed and adopted in poultry farming, mainly due to its ease of use (transport, storage initial investment cost, maintenance, efficiency). However, gas represents in of the main variable costs alongside feed and chicks, with fluctuating costs depending on market prices. For this reason, and in response to the challenge of better energy management for environmental sustainability, biomass heating emerges as an interesting alternative to propane gas, with lower carbon footprint and equivalent efficiency.

lub

Szczegółowy opis

1/1

lub

Szczegółowe informacje o wkładzie

Lokalizacja
  • Europe
  • France
Autorzy
  • Stefan Gunnarsson
Cel
  • Dissemination
  • Decision-making support
  • Communication
  • Education/Training
Typ pliku
Document
Rozmiar pliku
565 kB
Utworzono dnia
01-04-2024
Język pochodzenia
English
Oficjalna strona projektu
BROILERNET
Licencja
CC BY-ND

Powiązane treści

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.