Biorefinery Glas: Production of grass whey and its suitability for fertiliser and bioenergy applications

A fact sheet on the potential use of grass whey as a biofertiliser and used to produce bioenergy. Biorefinery processed fresh grass can be processed to produce a presscake fibre feed for ruminants, and a protein concentrate which can serve as monograstric feed. A high value sugar stream, rich in fructo-oligosaccharides, a prebiotic, can be extracted from the remaining liquid, leaving a residual stream called “whey” which contains many nutrients, minerals and sugars. In the sections below we will detail the potential of using this whey as a bio-fertilizer or for the production of bioenergy through anaerobic digestion. Overall, four product streams were evaluated. Presscake fibre was produced as cattle feed. Green protein concentrate was produced for monogastrics. A prebiotic, fructo-oligosaccharides was extracted. The residual grass whey can remain on the farm as fertilizer. Grass whey process residues can also be used for the production of biogas through anaerobic digestion.

lub

Szczegółowy opis

1/1

lub

Szczegółowe informacje o wkładzie

Lokalizacja
  • Ireland
Autorzy
  • James Gaffey
Cel
  • Communication
  • Dissemination
  • Education/Training
Typ pliku
Document
Rozmiar pliku
8.12 MB
Utworzono dnia
31-12-2019
Język pochodzenia
English
Oficjalna strona projektu
NUTRI-KNOW
Licencja
CC BY

Powiązane treści

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.