EU-Farmbook
  • Projecten
  • Over
  • Ondersteuning
AanmeldenRegistreren
EU-Farmbook

EU-FarmBook is een verzameling van gecontroleerde beste praktijken voor boeren en bosbouwers. Alle inhoud in de bibliotheek is afkomstig van Horizon-onderzoeksprojecten. Lees meer over dit project op onze website.

Over ons

  • Over EU-FarmBook
  • Draag bij
  • Ondersteuning
  • Contacteer ons

Volg ons

  • LinkedIn
  • YouTube
Europese vlag

Gefinancierd door de Europese Unie

Gefinancierd door de Europese Unie. Opvattingen en meningen zijn echter uitsluitend die van de auteur(s) en komen niet noodzakelijkerwijs overeen met die van de Europese Unie of de Europese Commissie. Noch de Europese Unie, noch de Europese Commissie kan hiervoor verantwoordelijk worden gehouden.

© 2025 EU-FarmBook. Alle rechten voorbehouden.

  • Privacybeleid
  • Disclaimer
  • Cookies
Europese vlag
    • Crop farming

    Factsheet DSS Orange wheat blossom midge

    Orange wheat blossom midge larvae feed on developing grains. The larvae produced by the orange wheat blossom midge can cause grains to become small and shrivelled. They can also damage the outer grain layer (pericarp) which allows water to enter. This results in grain which becomes vulnerable to fungal infection and premature sprouting. Control with help of DSS on platform.ipmdecisions.net The susceptible crops are at highest risk when adult midge emergence coincides with ear emergence, particularly at growth stages between 53 and 59. The model predicts the emergence of adults and associated migration of females into vulnerable crops and when increased monitoring and/or treatment may be appropriate. The model uses daily temperature (degree Celsius) and rainfall (mm) to identify the emergence of Orange Wheat Blossom Midge. It runs between the months May and June, but requires weather data from the 1st of January. The DSS output show that the risk of emergence of orange wheat blossom midge and migration into crops is increasing. Suitable rainfall events have taken place, and/or daily temperatures are suitable for orange wheat blossom midge emergence which is visualised as a red line in the risk status diagram. This means that increased monitoring efforts or treatments may be appropriate. This DSS was adapted from work carried out in Belgium, and is considered to be applicable, but yet to be validated in the UK, Luxembourg, Netherlands, France, Germany and Denmark.

    of

    Detail beschrijving

    1/1

    of

    Details bijdrage

    Project

    IPM Decisions

    Stepping-up IPM decision support for crop protection

    Locatie
    • Europe
    • United Kingdom
    Auteurs
    • L. Langner
    Doel
    • Decision-making support
    Soort bestand
    Document
    Bestandsgrootte
    591 kB
    Gepubliceerd op
    13-10-2023
    Taal van herkomst
    English
    Officiële project website
    IPM Decisions
    Licensie
    CC BY
    Trefwoorden
    • factsheet
    • DSS
    • decision support system
    • IPM Decisions
    • wheat
    • Orange wheat blossom midge

    Gerelateerde inhoud

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity