Early warning system and mitigation strategies for Tomato brown rugose fruit virus

Tomato brown rugose fruit virus (ToBRFV) poses a huge threat to commercial tomato cultivation worldwide. Due to its high persistence and easy mechanical transmission, ToBRFV is extremely hard to get rid of once it enters the greenhouse. Current management strategies therefore centre around preventive measures, such as improved hygiene, in an attempt to keep the virus out of the crop. Early detection of the virus can also play an important role. Our research shows that ToBRFV circulates in greenhouse water systems and can be detected in drain water samples before the plants start showing symptoms. We illustrate that drain water can be used to monitor ToBRFV outbreaks and thus can serve as an early warning system.

jew

Deskrizzjoni fid-dettall

1/1

jew

Informazzjoni dwar id-dettall tal-kontribuzzjoni

Post
  • Europe
  • Belgium
Awturi
  • Elise Vogel
  • Inge Hanssen
Għan
  • Monitoring
  • Prediction/Forecasting
  • Decision-making support
  • Dissemination
Tip ta' fajl
Document
Daqs tal-fajl
534 kB
Maħluq fuq
05-06-2022
Lingwa tal-oriġini
English
Websajt uffiċjali tal-proġett
VIRTIGATION
Liċenzja
CC BY

Kontenut relatat

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.