Practice abstract of GO commercial apple plantations
This project consists of applying a global plant protection strategy based on biological control in two commercial apple orchards protected by an anti-hail net (in the upper part) and by antiinsect polyethilene nets (on the side). The project activities are devoted to biological control of aphids, particularly of rosy apple aphid (Disaphys plantaginea), green apple aphid (Aphis pomi) and woolly apple aphid (Eriosoma lanigerum).
Detail description
1/1
Contribution detail info
- Location
- Spain
- Authors
- Àlex Creixell Hontangas
- Purpose
- Communication
- Dissemination
- File type
- Document
- File size
- 280 kB
- Created on
- 04-05-2021
- Origin language
- Spanish
- Official project website
- Biological pest control in commercial appel plantations
- License
- CC BY
Related content
A Bio-inspired Multilayer Drainage System
Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/
NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY
This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).
Environmental monitoring within greenhouse crops using wireless sensors
Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.