Please note that this language is still in beta.

If you have any suggestions or feedback, kindly reach out through our contact form.
EU-Farmbook
  • Despre
  • Sprijin
AutentificareÎnscrieți-vă
EU-Farmbook

EU-FarmBook este o colecție de bune practici verificate pentru fermieri și silvicultori. Tot conținutul din bibliotecă este furnizat de proiectele de cercetare Horizon. Aflați mai multe despre acest proiect pe site-ul nostru.

Despre noi

  • Despre EU-FarmBook
  • Contribuiți
  • Sprijin
  • Contactați-ne

Urmăriți-ne

  • LinkedIn
  • YouTube
Steagul european

Finanțat de Uniunea Europeană

Finanțat de Uniunea Europeană. Cu toate acestea, punctele de vedere și opiniile exprimate aparțin exclusiv autorului (autorilor) și nu reflectă în mod necesar cele ale Uniunii Europene sau ale Comisiei Europene. Nici Uniunea Europeană, nici Comisia Europeană nu pot fi trase la răspundere pentru acestea.

© 2025 EU-FarmBook. Toate drepturile rezervate.

  • Politica de confidențialitate
  • Disclaimer
  • Cookie-uri
Steagul european
    • Crop farming

    Solanum elaeagnifolium and S

    Invasive weeds cause significant crop yield and economic losses in agriculture. The highest indirect impact may be attributed to the role of invasive weeds as virus reservoirs within commercial growing areas. The new tobamovirus tomato brown rugose fruit virus (ToBRFV), first identified in the Middle East, overcame the Tm-22 resistance allele of cultivated tomato varieties and caused severe damage to crops. In this study, we determined the role of invasive weed species as potential hosts of ToBRFV and a mild strain of pepino mosaic virus (PepMV-IL). Of newly tested weed species, only the invasive species Solanum elaeagnifolium and S. rostratum were susceptible to ToBRFV infection. S. rostratum was also susceptible to PepMV-IL infection. No phenotype was observed on ToBRFV-infected S. elaeagnifolium grown in the wild or following ToBRFV inoculation. S. rostratum plants inoculated with ToBRFV contained a high ToBRFV titer compared to ToBRFV-infected S. elaeagnifolium plants. Mixed infection with ToBRFV and PepMV-IL of S. rostratum plants, as well as S. nigrum plants (a known host of ToBRFV and PepMV), displayed synergism between the two viruses, manifested by increasing PepMV-IL levels. Additionally, when inoculated with either ToBRFV or PepMV-IL, disease symptoms were apparent in S. rostratum plants and the symptoms were exacerbated upon mixed infections with both viruses. In a bioassay, ToBRFV-inoculated S. elaeagnifolium, S. rostratum and S. nigrum plants infected tomato plants harboring the Tm-22 resistant allele with ToBRFV. The distribution and abundance of these Solanaceae species increase the risks of virus transmission between species. It is most important to eradicate all Solanaceae weed species grown adjacent to the tomato plants inside the greenhouse and in the surrounding area.

    sau

    Descriere detaliată

    1/1

    sau

    Informații detaliate privind contribuția

    Proiect

    VIRTIGATION

    EMERGING VIRAL DISEASES IN TOMATOES AND CUCURBITS: IMPLEMENTATION OF MITIGATION STRATEGIES FOR DURABLE DISEASE MANAGEMENT

    Locație
    • Europe
    Autori
    • Maor Matzrafi
    • Jackline Abu-Nassar
    Scop
    • Dissemination
    • Education/Training
    • Decision-making support
    • Monitoring
    Tip fișier
    Document
    Dimensiunea fișierului
    640 kB
    Creat pe
    01-03-2023
    Limba de origine
    English
    Site-ul oficial al proiectului
    VIRTIGATION
    Licență
    CC BY
    Cuvinte-cheie
    • Solanum elaeagnifolium
    • Solanum rostratum
    • Tomato Brown Rugose Fruit Virus (ToBRFV)
    • Invasive weeds

    Conținut conex

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity