Towards levelling up the EIP-AGRI – a common framework for multilevel functional capacity development

This Policy Brief is the result of cooperation between the two European Union funded projects LIAISON and PREMIERE. PREMIERE (Preparing Multi-Actor Projects in a Co-Creative Way) receives funding from the Horizon Europe research and innovation programme. It aims to foster the development of sound, coherent and well-prepared multi-actor projects for innovation in agriculture, forestry, and rural businesses. LIAISON (Better Rural Innovation: Linking Actors, Instruments and Policies through Networks) received funding from the previous Horizon 2020 research and innovation programme. It aimed to develop methods and tools for the enhancement of the EIP-Agri, an initiative launched by the European Commission in 2012 with its goal of fostering competitive and sustainable agriculture and forestry that “achieves more and better from less”.

sau

Descriere detaliată

1/1

sau

Informații detaliate privind contribuția

Locație
  • Europe
Autori
  • Susanne von Münchhausen
Scop
  • Communication
  • Dissemination
  • Access to Data
  • Decision-making support
Tip fișier
Document
Dimensiunea fișierului
1.84 MB
Creat pe
01-08-2023
Limba de origine
English
Site-ul oficial al proiectului
LIAISON
Licență
CC BY

Conținut conex

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.