EU-Farmbook
  • Il progetto
  • Supporto
AccediIscriviti
EU-Farmbook

EU-FarmBook è una raccolta di buone pratiche per agricoltori e forestali. Tutti i contenuti della biblioteca sono forniti da progetti di ricerca Horizon. Per saperne di più su questo progetto, visita il nostro sito web.

Chi siamo

  • Informazioni su EU-FarmBook
  • Contribuisci
  • Supporto
  • Contattaci

Seguici

  • LinkedIn
  • YouTube
Bandiera europea

Finanziato dall'Unione Europea

Finanziato dall'Unione europea. I punti di vista e le opinioni espresse sono tuttavia esclusivamente quelli dell'autore o degli autori e non riflettono necessariamente quelli dell'Unione europea o della Commissione europea. Né l'Unione Europea né la Commissione Europea possono essere ritenute responsabili.

© 2025 EU-FarmBook. Tutti i diritti riservati.

  • Informativa sulla privacy
  • Esclusione di responsabilità
  • Cookies
Bandiera europea
    • Crop farming
    • Environment

    Scenarios maps: visualising optimised scenarios where supply of soil functions matches demands

    LANDMARK is a pan-European multi-actor consortium of leading academic and applied research institutes, chambers of agriculture and policy makers that will develop a coherent framework for soil management aimed at sustainable food production across Europe. The LANDMARK proposal builds on the concept that soils are a finite resource that provide a range of ecosystem services known as “soil functions”. Functions relating to agriculture include: primary productivity, water regulation & purification, carbon-sequestration & regulation, habitat for biodiversity and nutrient provision & cycling. Tradeoffs between these functions may occur: for example, management aimed at maximizing primary production may inadvertently affect the ‘water purification’ or ‘habitat’ functions. This has led to conflicting management recommendations and policy initiatives. There is now an urgent need to develop a coherent scientific and practical framework for the sustainable management of soils.

    o

    Descrizione dettagliata

    1/1

    o

    Informazioni sul contributo

    Progetto

    LANDMARK: Land Management Assessment Research Knowledge base ( EU H2020 project)

    LANDMARK: Land Management Assessment Research Knowledge base ( EU H2020 project)

    Posizione
    • Europe
    Autori del contributo
    • Rachel Creamer
    Scopo
    • Dissemination
    • Education/Training
    Tipo di file
    Document
    Dimensione del file
    13.40 MB
    Pubblicato su
    19-11-2019
    Lingua d'origine
    English
    Sito web ufficiale del progetto
    LANDMARK: Land Management Assessment Research Knowledge base ( EU H2020 project)
    Licenza
    CC BY
    Parole chiave
    • Water regulation
    • water percolation
    • sediment loss
    • nutrient use efficiency
    • erosion
    • irrigation.
    • soil quality
    • water runoff
    • water use efficiency
    • nutrient loss
    • water purification
    • water storage
    • nutrient leaching

    Contenuti correlati

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity