Recent progress and potential future directions to enhance biological nitrogen fixation in faba bean (Vicia faba L
The necessity for sustainable agricultural practices has propelled a renewed interest in legumes such as faba bean (Vicia faba L.) as agents to help deliver increased diversity to cropped systems and provide an organic source of nitrogen (N). However, the increased cultivation of faba beans has proven recalcitrant worldwide as a result of low yields. So, it is hoped that increased and more stable yields would improve the commercial success of the crop and so the likelihood of utilisation. Enhancing biological N fixation (BNF) in faba beans holds promise not only to enhance and stabilize yields but also to increase residual N available to subsequent cereal crops grown on the same field. In this review, we cover recent progress in enhancing BNF in faba beans. Specifically, rhizobial inoculation and the optimization of fertilizer input and cropping systems have received the greatest attention in the literature. We also suggest directions for future research on the subject. In the short term, modification of crop management practices such as fertilizer and biochar input may offer the benefits of enhanced BNF. In the long term, natural variation in rhizobial strains and faba bean genotypes can be harnessed. Strategies must be optimized on a local scale to realize the greatest benefits. Future research must measure the most useful parameters and consider the economic cost of strategies alongside the advantages of enhanced BNF.
Descrizione dettagliata
1/1
Informazioni sul contributo
- Posizione
- Europe
- United Kingdom
- Autori del contributo
- Pietro Iannetta
- Scopo
- Education/Training
- Experimentation
- Dissemination
- Tipo di file
- Document
- Dimensione del file
- 2.83 MB
- Pubblicato su
- 21-05-2024
- Lingua d'origine
- English
- Sito web ufficiale del progetto
- LegumES
- Licenza
- CC BY
Contenuti correlati
A Bio-inspired Multilayer Drainage System
Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/
NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY
This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).
Environmental monitoring within greenhouse crops using wireless sensors
Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.