ForestValue2 - Common methodology manual for Scientific Cafés
In recent decades, the social demand for the involvement of civil society in decision-making processes on environmental issues has been growing worldwide. Among the techniques for involving civil society, the Scientific Cafés are new and flexible tools aimed at ensuring effective communication between scientists, practitioners, civil society, and decision-makers on scientific topics in an informal and inclusive way. From 2004 to today, the Scientific Cafés are increasingly spreading in several scientific fields including forestry. The document describes the common methodology followed in a public engagement activity carried out in the framework of ForestValue2 (Horizon Europe project). The methodology includes five steps: i) identification of the scientific topics; ii) selection of the audience (general public or a specific target group of stakeholders); iii) Scientific Café organization (in person or virtually); iv) definition of the participatory technique; and v) definition of the outcomes. Finally, the approach is based on a few key aspects that create a successful Scientific Café: informality and accessibility of the events as well as a friendly, inclusive, and non-competitive environment.
Descrizione dettagliata
1/1
Informazioni sul contributo
- Posizione
- Europe
- Autori del contributo
- Alessandro Paletto
- Silvia Baralla
- Sonia Marongiu
- Serenella Puliga
- Isabella De Meo
- Scopo
- Communication
- Dissemination
- Decision-making support
- Tipo di file
- Document
- Dimensione del file
- 849 kB
- Pubblicato su
- 28-07-2023
- Lingua d'origine
- English
- Sito web ufficiale del progetto
- ForestValue2
- Licenza
- CC BY
Contenuti correlati
A Bio-inspired Multilayer Drainage System
Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/
NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY
This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).
Environmental monitoring within greenhouse crops using wireless sensors
Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.