EU-Farmbook
  • Il progetto
  • Supporto
AccediIscriviti
EU-Farmbook

EU-FarmBook è una raccolta di buone pratiche per agricoltori e forestali. Tutti i contenuti della biblioteca sono forniti da progetti di ricerca Horizon. Per saperne di più su questo progetto, visita il nostro sito web.

Chi siamo

  • Informazioni su EU-FarmBook
  • Contribuisci
  • Supporto
  • Contattaci

Seguici

  • LinkedIn
  • YouTube
Bandiera europea

Finanziato dall'Unione Europea

Finanziato dall'Unione europea. I punti di vista e le opinioni espresse sono tuttavia esclusivamente quelli dell'autore o degli autori e non riflettono necessariamente quelli dell'Unione europea o della Commissione europea. Né l'Unione Europea né la Commissione Europea possono essere ritenute responsabili.

© 2025 EU-FarmBook. Tutti i diritti riservati.

  • Informativa sulla privacy
  • Esclusione di responsabilità
  • Cookies
Bandiera europea
    • Livestock

    Promote insects as an alternative source of protein in broiler chicken feed

    The BroilerNet project involves a bottom-up approach to identify challenges and innovation needs for broiler farmers in Europe, and to collect promising and already successfully implemented Good Practices to meet the challenges in questions. The top Good Practices selected by experts within the three thematic areas (animal health management, animal welfare and sustainability) have been summarized in factsheets. The production of poultry feed still mainly relies on plant proteins, requiring resource-intensive crops. Indeed, after the mad-cow disease crisis (bovine spongiform enecephalopathy), Regulation of EU council no 999/2001 set out rules on farmed animals feed, including the prohibition of processed animal proteins (PAP). Derogations have since then been issued, regarding insects PAP in poultry and pig feed (Regulation EU No 2021/1372). However, cross-contamination risk with rumnirant feed cannot be excluded, which would require specific regulations to mitigate it (e.g. separation of the production and farming chains). This explains tha ongiung dependence of poultry feed production on plant proteins from third countriesm which often leads to environmental issues such as deforestation, hebitat loss, and overexploitation of agricultural land. Insects emerge as an eco-friendlier and efficient alternative, being "an excellent feed material, with high concentration of highly digestable nutrients such as amino acids and phosphorus, and a high content in vitamins "which "would reduce this dependence on third countries' protein" as highlighted in Regulation (EU) No 2021/1372.

    o

    Descrizione dettagliata

    1/1

    o

    Informazioni sul contributo

    Progetto

    BROILERNET

    Practice and Science Broiler Production Innovation Network

    Posizione
    • Europe
    • France
    Autori del contributo
    • Stefan Gunnarsson
    Scopo
    • Dissemination
    • Communication
    • Decision-making support
    • Education/Training
    Tipo di file
    Document
    Dimensione del file
    528 kB
    Pubblicato su
    01-04-2024
    Lingua d'origine
    English
    Sito web ufficiale del progetto
    BROILERNET
    Licenza
    CC BY-ND
    Parole chiave
    • Animal sustainability
    • Italian
    • Broiler production
    • Management practice
    • Good Practice

    Contenuti correlati

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity