Wireless Sensor Network Coverage Measurement and Planning in Mixed Crop farming

Wireless sensor network technology holds great promise for application in agriculture to improve crop yield, improve quality, and reduce costs. This paper presents wireless sensor network coverage measurements in a mixed crop farmland. As one of its key contributions, this study shows that general vegetation attenuation models do not apply to lowpower wireless sensor networks. Alog-linear model is proposed in this paper and validated for application in mixed crop environment. Unlike in mono-crop environment, this study shows that the network coverage is heterogeneous with asymmetric channel between communicating node pair.

Részletes leírás

1/1

Hozzájárulás részletes információ

Helyszín
  • Europe
Szerzők
  • smart-AKIS
Cél
  • Dissemination
Fájltípus
Factsheet
Fájlméret
1.03 MB
Létrehozta a
03-01-2018
Eredeti nyelv
English
A projekt hivatalos honlapja
Smart-AKIS
Licenc
CC BY

Kapcsolódó tartalom

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.