We developed a modelling approach that has multiple applications in precision livestock farming, nutrition, and selective breeding. The approach is demonstrated through three case studies on monogastric livestock: growth in pigs, and reproduction in sows and in laying hens. Comparison of trait variability across these species and traits shows common aspects that they share as well as their distinctive features. This methodology comprises a data-driven (top-down) approach, where models are fitted to phenotypic trait data obtained from multiple individual animals; and a simulation (bottom-up) approach, where population phenotypic variation is derived and summarised by the average and deviation (i.e., median and confidence interval) for each modelled trait. The approach has the following benefits in relation to current alternatives: 1) Making no prior assumptions about the distributions of traits and their correlations within the population; specifically, it is assumed that the population traits are distributed according to the trait distribution in the group of sampled animals (nonparametric approach). 2) Being computationally faster than current parametric approaches; specifically, the distribution of traits in the wider population is inferred from that in the sample through a process of individual resampling. 3) Having no specific requirements on the size and quality of the datasets input.
1/1
This factsheet explains how bringing a team of farmer, vet, feed and farm advisors together is sharing different sources of knowledge together, making the Multi Actor Farm Health approach an effective approach to improve biosecurity on poultry farms
An infographic providing a compact overview on Polish company approach to recycle organic waste and by-products.
This factsheet presents the biosecurity audit tool Biocheck Ugent, that can give a biosecurity scoring in poultry farms to measure biosecurity level.