List of indicators for self-assessment as a result of task 2.2

The main objective of the determination of indicators for assessing grazing capacities on farm level is to evaluate grazing farm performance through the five core principles of agroecology. The five principles of agroecology should be optimised to meet the challenges of economic, ecological and societal requirements as well as on animal welfare on farm. These principles have been divided into five pillars of agroecology and will be the core of the indicators for assessing grazing capacities at farm level.

Yksityiskohtainen kuvaus

1/1

Contribution detail info

Sijainti
    Kirjoittajat
    • Arno Krause
    • Caitlin Looney
    • Michael O Donovan
    • Soline Schetelat
    Käyttötarkoitus
    • Decision-making support
    Tiedostotyyppi
    Deliverable report
    Tiedoston koko
    779 kB
    Luotu
    10-09-2023
    Alkuperäiskieli
    English
    Hankkeen virallinen verkkosivusto
    Grazing4AgroEcology
    Lisenssi
    CC BY

    Aiheeseen liittyvä sisältö

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.