Food System Innovation Assessment Report

The FoodSHIFT2030 project was leading an ambitious citizen-driven transition of the European food system towards a low-carbon, circular future, including a shift to less meat and more plant-based diets. The FoodSHIFT2030 approach focused on supporting innovation towards a fast transition of the European food system by 2030, which is necessary in order to address the pressing challenges for food and nutrition security, contributed to the EU commitment of reducing GHG emissions by at least 40% by 2030, and revitalized urban-rural linkages and partnerships to secure the achievement of the UN Sustainable Development Goals (SDGs) by 2030.

või

Täpsem kirjeldus

1/1

või

Panus detailne info

Asukoht
  • Europe
Autorid
  • Małgorzata Świąder
  • Marta Sylla
  • Grzegorz Chrobak
  • Gustavo Arciniegas
  • Dirk Wascher
  • José Luis Vicente- Vicente
Eesmärk
  • Communication
  • Dissemination
Faili tüüp
Document
Faili suurus
2.38 MB
Loodud aadressil
01-09-2022
Päritolukeel
English
Projekti ametlik veebileht
Litsents
CC BY

Seotud sisu

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.