EU-Farmbook
  • Projects
  • Farm Assistant
  • About
  • Support
LoginSign up
EU-Farmbook

EU-FarmBook is a collection of vetted best practices for farmers & foresters. All content in the library is provided by Horizon research projects. Learn more about this project on our website.

About us

  • About EU-FarmBook
  • Contribute
  • Support
  • Contact us

Follow us

  • LinkedIn
  • YouTube
European flag

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Commission. Neither the European Union nor the European Commission can be held responsible for them.

© 2025 EU-FarmBook. All rights reserved.

  • Privacy Policy
  • Disclaimer
  • Cookies
European flag
    • Crop farming

    The final report of the ReMIX project

    ReMIX aimed at analysing and optimizing the functioning of species mixtures, also called intercrops, in order to help design sustainable and diversified cropping systems for both conventional and organic agriculture. The studied species mixtures were mainly cereals and grain legumes. Eleven multi-actor platforms (MAPs) were set up in ten countries in order to demonstrate potential performances and interests of species mixtures. MAPs were a rich picture of promising species mixtures embedded in local negotiations and adjustments by relevant actors securing developing effective solutions fitted to the social and economic context in which farmers operate. Several knowledge syntheses, new experimental and modelling studies have been carried out to determine how plant traits (e.g. root architecture and canopy morphology), cropping practices (e.g. plant density), and environment (availability of N, P and water, light quality) influence the performances of species mixtures as compared to sole crops for the capture of abiotic resources and the control of animal pests, diseases and weeds. Novel ideas and specific concepts were developed in order to support breeding for intercropping. As much as possible, we aimed at converting scientific results into practical tools and synthetic information disseminated not only to farmers, advisors, and other farming sector stakeholders, but also to policy makers.

    or

    Detail description

    1/1

    or

    Contribution detail info

    Project

    ReMIX

    Redesigning European cropping systems based on species MIXtures

    Location
    • France
    • Europe
    Authors
    • Eric Justes
    Purpose
    • Evaluation
    File type
    Document
    File size
    481 kB
    Created on
    24-04-2024
    Origin language
    English
    Official project website
    ReMIX
    License
    CC BY
    Keywords
    • Intercropping
    • cereal-legume mixture
    • multi-actor approach

    Related content

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity