The European project “Virtigation”: an opportunity to learn more about whitefly pests of vegetable crops and to update on strategies for their

The project VIRTIGATION, funded by the European Union under the Horizon 2020 programme, involves 25 partners from 12 different countries, and aims to develop solutions for the control of emerging viruses on cucurbits and tomatoes caused by begomoviruses and tobamoviruses (the first ones transmitted by insects). Main entomological objectives of the project are to: i) understand plant-virus-vector interactions; ii) identify ecological factors that favour outbreaks of infections; iii) investigate biology of vector insects and their virus transmission efficiency under climate change conditions; iv) enhance and optimize natural resistance, especially for lower attractiveness of plants to vector insects; v) develop solutions for the integrated control of the viruses and their vectors. Within this project, the University of Catania (Department of Agriculture, Food and Environment – Di3A) will have to: a) contribute to a survey in various partner countries on methods used for whitefly control, especially Bemisia tabaci; b) coordinate field trials to evaluate the efficacy of new plant extracts with insecticidal action, also analysing their secondary effects on natural enemies and pollinators; c) carry out field trials with the most promising accessions for their resistance to B. tabaci MED; d) evaluate the combination of different approaches for whitefly control.

eller

Detaljeret beskrivelse

1/1

eller

Detaljerede oplysninger om bidrag

Beliggenhed
  • Europe
  • Italy
Forfattere
  • Carmelo Rapisarda
  • Alessia Farina
  • Giuseppe E. Massimino Cocuzza
  • Pompeo Suma
Formål
  • Experimentation
  • Dissemination
  • Decision-making support
Filtype
Document
Filstørrelse
302 kB
Oprettet den
12-06-2023
Oprindelsessprog
English
Projektets officielle hjemmeside
VIRTIGATION
Licens
CC BY

Relateret indhold

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.