OG_Operational Manual on ecological sequences of the Aronia Melanocarpa
The main objective of the Operational Group was the efficiency of black corrupt (Aronia melanocarpa) plant production by implementing ecological sequences in the micro propagation process. The Handbook presents the in vitro propagation technology in the Aronia melanocarpa variety 'Melrom'.
Detalizēts apraksts
1/1
Detalizēta informācija par ieguldījumu
- Atrašanās vieta
- Romania
- Autori
- Catita Plopa
- Mērķis
- Education/Training
- Faila tips
- Document
- Faila lielums
- 8.31 MB
- Izveidots
- 30-03-2024
- Izcelsmes valoda
- Romanian
- Oficiālā projekta tīmekļa vietne
- ECOLOGICAL SEQUENCING REPRODUCTION TECHNOLOGY FOR BLACK CORRUPT (ARONIA MELANOCARPA)
- Licence
- CC BY
Saistīts saturs
A Bio-inspired Multilayer Drainage System
Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/
NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY
This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).
Club GREY HORSE – Providing multiple ecosystems services by forest renters
This case study is drafting new legislation that allows renting forestland for multiple purposes in order to increase economic efficiency and maintain a balance between all ecosystem services. This Russian case works on regulation mechanisms so that people renting forestland can use it for multiple purposes, and to include ecosystem services in the Forest Code.