MOVING Project - Vulnerability and resilience of the lamb production in the mountain regions

MOVING was an EU Horizon 2020 project that aimed to build capacities and co-develop relevant policy frameworks across Europe to support the establishment of new or upgraded/upscaled value chains that contribute to the resilience and sustainability of mountain areas. The project engaged value chain actors, stakeholders, and policymakers in a total of 23 European mountain regions in 15 countries. This digital story summarises the vulnerability drivers affecting the lamb from the region of the Weiz value chain and its possible adaptation measures regarding the adverse effects of climate change and other socio-economic factors.

Detalizēts apraksts

Detalizēta informācija par ieguldījumu

Atrašanās vieta
  • Austria
Autori
  • Sandra Karner
  • David Steinwender
Mērķis
  • Communication
  • Dissemination
Faila tips
Video
Faila lielums
23.54 MB
Izveidots
17-02-2023
Izcelsmes valoda
English
Oficiālā projekta tīmekļa vietne
MOVING
Licence
CC BY

Saistīts saturs

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.