Comment insérer de l'azote dans les systèmes de culture?
This document presents the slides of the final seminar of the project Operational Group Proteins. It has different parts : - symbiotic fication of nitrogen and how much this nitrogen can be used by the next crop in the rotation - ways to reduce nitrate leaching to the water bodies - introducing soya in the crop rotation -farmers' experience on how to deal with the limiting factors of legumes. The project was run in 2019-2021 in the French Region Bourgogne Franche-Comté
Detail description
1/1
Contribution detail info
- Location
- France
- Authors
- Hélène Gauchez
- Purpose
- Communication
- File type
- Slideshow / Presentation
- File size
- 3.82 MB
- Created on
- 06-07-2021
- Origin language
- French
- Official project website
- GO PROTEINS - Capitalize and innovate in a network with farmers and their partners towards a "prote
- License
- CC BY
Related content
A Bio-inspired Multilayer Drainage System
Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/
NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY
This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).
Environmental monitoring within greenhouse crops using wireless sensors
Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.