Artificial digestion to detect T

This study compared artificial digestion and a microfluidic device for detecting Trichinella spiralis in pigs. While the microfluidic method was less consistent, it showed promising results, with some samples having higher larval counts than artificial digestion.

o

Descripción detallada

1/1

o

Información detallada sobre la contribución

Ubicación
  • Europe
Autores
  • Vasile Cozma (USAMV CLUJ)
Propósito
  • Communication
  • Dissemination
Tipo de fichero
Document
Tamaño del archivo
746 kB
Creado el
30-05-2022
Lengua de origen
English
Sitio web oficial del proyecto
PPILOW
Licencia
CC BY

Contenidos relacionados

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

IMPROVE BIOSECURITY WITH YOUR MULTI-ACTOR FARM HEALTH TEAM

Document

This factsheet explains how bringing a team of farmer, vet, feed and farm advisors together is sharing different sources of knowledge together, making the Multi Actor Farm Health approach an effective approach to improve biosecurity on poultry farms