Summary of NEWCOTIANA Developing Multipurpose Nicotiana Crops for Molecular Farming using New Plant Breeding Techniques

NEWCOTIANA is a research project that employs New Breeding Techniques (NBTs) to develop new plant varieties of the genus Nicotiana producing end-value chemicals including proteins and metabolites. Plants can be used as biofactories of biopharmaceuticals and other added-value chemicals at an agricultural scale, offering a sustainable solution for present and future manufacturing needs. The species within the genus Nicotiana, more specifically N. tabacum (cultivated tobacco) and N. benthamiana (an Australian tobacco relative), are among the most widely used plant biofactories because of their favourable attributes, which include metabolic versatility, ease of cultivation and high yield, availability of genetic tools for trait manipulation, and their non-food status, which minimizes the possibility of contamination of the food supply.

o

Descripción detallada

1/1

o

Información detallada sobre la contribución

Ubicación
  • Spain
Autores
  • Diego Orzaez Calatayud
Propósito
  • Communication
  • Dissemination
Tipo de fichero
Document
Tamaño del archivo
172 kB
Creado el
06-12-2022
Lengua de origen
English
Sitio web oficial del proyecto
Newcotiana
Licencia
CC BY

Contenidos relacionados

A Bio-inspired Multilayer Drainage System

Document

Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

Document

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

Environmental monitoring within greenhouse crops using wireless sensors

Document

Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.