EU-Farmbook
  • Σχετικά
  • Βοήθεια
ΣύνδεσηΕγγραφή
EU-Farmbook

Το EU-FarmBook είναι μια συλλογή ελεγμένων βέλτιστων πρακτικών για αγρότες και δασολόγους. Όλο το περιεχόμενο της βιβλιοθήκης παρέχεται από ερευνητικά έργα του προγράμματος Horizon. Μάθετε περισσότερα για το έργο αυτό στον ιστότοπό μας.

Σχετικά με εμάς

  • Σχετικά με το EU-FarmBook
  • Συνεισφέρετε
  • Βοήθεια
  • Επικοινωνήστε μαζί μας

Ακολουθήστε μας

  • LinkedIn
  • YouTube
Ευρωπαϊκή σημαία

Χρηματοδοτούμενο από την Ευρωπαϊκή Ένωση

Με τη χρηματοδότηση της Ευρωπαϊκής Ένωσης. Ωστόσο, οι απόψεις και οι γνώμες που εκφράζονται είναι αποκλειστικά του(των) συγγραφέα(ων) και δεν αντανακλούν κατ' ανάγκη τις απόψεις και τις γνώμες της Ευρωπαϊκής Ένωσης ή της Ευρωπαϊκής Επιτροπής. Ούτε η Ευρωπαϊκή Ένωση ούτε η Ευρωπαϊκή Επιτροπή μπορούν να θεωρηθούν υπεύθυνες γι' αυτές.

© 2025 EU-FarmBook. Όλα τα δικαιώματα είναι κατοχυρωμένα.

  • Πολιτική Απορρήτου
  • Αποποίηση ευθύνης
  • Cookies
Ευρωπαϊκή σημαία
    • Crop farming

    Factsheet DSS potato late blight negative prognosis

    Potato late blight, caused by the fungus-like organism. Phytophthora infestans causes severe damage to the foliage and can infect the tubers at harvest. The DSS is designed to guide the timing of the first late blight fungicide application, when used in combination with other agronomic risk factors. The DSS uses weather data to estimate the ‘epidemic free’ period (‘negative prognosis’) by calculating the accumulated blight risk from the date of crop emergence. The model guides the first spray timing at the end of the ‘epidemic free’ period. Other agronomic factors than weather, such as time of row closure, cultivar susceptibility, the presence or absence of blight inoculum sources, are not included in the risk estimate. It is not applicable to potatoes grown under protection. From the date of crop emergence, daily risk values are accumulated based on weather data (temperature, relative humidity and precipitation). The risk is an accumulated value of how the weather affects late blight germination/infection, sporulation and growth. All processes are corrected for inhibition due to drying. After the accumulated risk has reached certain thresholds, there is likely to be moderate or high blight risk. The DSS was first introduced by Schrodter and Ullrich in Germany in the 1970s and has been widely used in Europe since. After the original paper by Ullrich, J. & Schrödter, H. (1966), the negative prognosis model was tested in other countries (e.g. b y Taylor M. C. 2003 in the UK) and was commonly combined with other models to guide subsequent fungicide applications. Combined models, such as NegFry, have been tested in many countries, e.g. b y Hansen J. G. et al., 1995 in Denmark.

    ή

    Λεπτομερής περιγραφή

    1/1

    ή

    Λεπτομερείς πληροφορίες συμβολής

    Έργο

    IPM Decisions

    Stepping-up IPM decision support for crop protection

    Τοποθεσία
    • Europe
    • United Kingdom
    Δημιουργοί
    • L. Langner
    Σκοπός
    • Decision-making support
    Τύπος αρχείου
    Document
    Μέγεθος αρχείου
    1.38 MB
    Δημοσιεύθηκε στις
    07-12-2022
    Γλώσσα προέλευσης, δημιουργίας?
    English
    Επίσημος δικτυακός τόπος του έργου
    IPM Decisions
    Άδεια
    CC BY
    Λέξεις-κλειδιά
    • factsheet
    • late blight
    • DSS
    • decision support system
    • IPM Decisions
    • potato

    Σχετικό περιεχόμενο

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity