Please note that this language is still in beta.

If you have any suggestions or feedback, kindly reach out through our contact form.
EU-Farmbook
  • Проекти
  • За
  • Подкрепа
ВходРегистрирайте се
EU-Farmbook

global.footer.description

За нас

  • За EU-FarmBook
  • Дайте своя принос
  • Подкрепа
  • Свържете се с нас

Следвайте ни

  • LinkedIn
  • YouTube
Европейско знаме

Финансиран от Европейския съюз

Финансира се от Европейския съюз. Изразените възгледи и мнения обаче са единствено на автора(ите) и не отразяват непременно тези на Европейския съюз или Европейската комисия. Нито Европейският съюз, нито Европейската комисия могат да бъдат държани отговорни за тях.

© 2025 EU-FarmBook. Всички права запазени.

  • Политика за поверителност
  • Отказ от отговорност
  • Бисквитки
Европейско знаме
    • Crop farming
    • Environment
    • Livestock

    Food self-sufficiency in Organic Agriculture - 2016 trials

    The document presents the trials conducted in 2016, along with the plots used for these trials. It includes the results of winter cereal-legume associations harvested for grain, as well as winter associations rich in legumes. The results of winter lupin harvested for grain are also provided, along with those from the faba bean and pea silage trial, grazed and mown grasslands, and ultra-early forage maize trials.

    или

    Подробно описание

    1/1

    или

    Подробна информация за приноса

    Проект

    REINE MATHILDE - for the development of the organic dairy sector in Normandy

    REINE MATHILDE - for the development of the organic dairy sector in Normandy

    Местоположение
    • France
    Автори
    • Thierry METIVIER Amandine GUIMAS Antoine JEANNE Caroline TOSTAIN David DELBECQUE Pascal ROUGIER
    Цел
    • Communication
    • Dissemination
    Тип на файла
    Document
    Размер на файла
    2.42 MB
    Създаден на
    10-11-2017
    Език на произхода
    French
    Официален уебсайт на проекта
    REINE MATHILDE - for the development of the organic dairy sector in Normandy
    Лиценз
    CC BY
    Ключови думи
    • pea silage
    • forage maize
    • faba bean silage
    • 2016 trials
    • winter associations
    • Food self-sufficiency
    • cereal-legume associations
    • winter lupin
    • ultra-early forage maize
    • grassland
    • Organic Agriculture

    Свързано съдържание

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity