Please note that this language is still in beta.

If you have any suggestions or feedback, kindly reach out through our contact form.
EU-Farmbook
  • Проекти
  • За
  • Подкрепа
ВходРегистрирайте се
EU-Farmbook

global.footer.description

За нас

  • За EU-FarmBook
  • Дайте своя принос
  • Подкрепа
  • Свържете се с нас

Следвайте ни

  • LinkedIn
  • YouTube
Европейско знаме

Финансиран от Европейския съюз

Финансира се от Европейския съюз. Изразените възгледи и мнения обаче са единствено на автора(ите) и не отразяват непременно тези на Европейския съюз или Европейската комисия. Нито Европейският съюз, нито Европейската комисия могат да бъдат държани отговорни за тях.

© 2025 EU-FarmBook. Всички права запазени.

  • Политика за поверителност
  • Отказ от отговорност
  • Бисквитки
Европейско знаме
    • Crop farming
    • Livestock
    • Society

    Technologies Innovation Workshop

    The aim was to gather experts, representatives of good practices and consortium partners who can share their knowledge and ideas on innovative challenges in Short Food Supply Chains (SFSCs) within the workshop. The workshop centered around the analysis of the recurrent and emerging issues based on the good practices and other cases examined to draw future scenarios on how innovation on SFSCs could transform Europe's agro-food sector.

    Подробно описание

    1/1

    Подробна информация за приноса

    Проект

    SKIN

    Short supply chain Knowledge and Innovation Network

    Местоположение
    • Hungary
    Автори
    • SKIN
    Цел
    • Dissemination
    • Education/Training
    Тип на файла
    Report / paper
    Размер на файла
    1.51 MB
    Създаден на
    15-01-2019
    Език на произхода
    Italian
    Официален уебсайт на проекта
    SKIN
    Лиценз
    CC BY
    Ключови думи
    • agro-food sector
    • supply chain
    • innovative technology ideas
    • livestock
    • crop farming
    • gastronomy
    • short supply chain
    • sfsc

    Свързано съдържание

    A Bio-inspired Multilayer Drainage System

    Document

    Agricultural run-off and subsurface drainage tiles transport a significant amount of nitrogen and phosphorus leached after fertilization. alchemia-nova GmbH in collaboration with University of Natural Resources and Life Sciences, Vienna developed two multi-layer vertical filter systems to address the agricultural run-off issue, which has been installed on the slope of an agricultural field in Mistelbach, Austria. While another multi-layer addressing subsurface drainage water is implemented in Gleisdorf, Austria. The goal is to develop a drainage filter system to retain water and nutrients. Both multi-layer filter systems contain biochar and other substrates with adsorption properties of nutrients (nitrogen, phosphorus). The filter system can be of practical use if an excess of nutrients being washed out is of concern in the fields of the practitioner by keeping the surrounding waters clean. This approach may result in economic value by re-using the saturated biochar as fertilizer and improving the soil structure, thus increasing long-term soil fertility. Link: https://wateragri.eu/a-bio-inspired-multilayer-drainage-system/

    • Drainage System
    • water treatment system
    • retain water
    • drainage filter system

    NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY

    Document

    This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No 858735. FACTSHEET NANOCELLULOSE MEMBRANES FOR NUTRIENT RECOVERY Key information Functionalized nanocellulose membranes can take up nitrate and phosphate. These membranes can be put in a water treatment unit. As the membranes are biobased, degradable materials, they can after use be added to the soil, thus returning the leached nutrients back for their original purpose providing fertilizers (nutrient recycling).

    • Biobased nutrient capture
    • agricultural drainage water
    • nanocellulose-based membrane
    • runoff treatmen
    • nutrient-rich membrane

    Environmental monitoring within greenhouse crops using wireless sensors

    Document

    Because variables such as temperature and humidity have a profound effect on the activity of crop pests, diseases and natural enemies, the ability to monitor environmental conditions within a crop has always been important for crop protection.

    • Brassica
    • IPM
    • monitoring
    • pest
    • crop
    • diagnostics
    • detection
    • decision support
    • application
    • techniques
    • sprayer
    • drone
    • UV
    • sensors
    • environmental conditions
    • greenhouse
    • case study
    • temperature
    • humidity